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Figure 1: We examine workplace rhythms by taking a holistic approach to the potential impact on workers’ social, biological, 
and behavioral rhythms. In particular, we analyze outcome variables for depression, stress, and anxiety with passively collected 
digital activity as well as self-reports and their variance over the course of a four-week naturalistic study. 

ABSTRACT 
Regularity in daily activities has been linked to positive well-being 
outcomes, but previous studies have mainly focused on clinical pop-
ulations and traditional daily activities such as sleep and exercise. 
This research extends prior work by examining the regularity of 
both self-reported and digital activities of 49 information workers in 
a 4-week naturalistic study. Our fndings suggest that greater vari-
ability in self-reported mood, job demands, lunch time, and sleep 
quality may be associated with increased stress, anxiety, and depres-
sion. However, when it comes to digital activity-based measures, 
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greater variability in rhythm is associated with reduced emotional 
distress. This study expands our understanding of workers and the 
potential insights that can be gained from analyzing technology 
interactions and well-being. 

CCS CONCEPTS 
• Human-centered computing → Human computer interac-
tion (HCI); Collaborative and social computing; 
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1 INTRODUCTION 
Maintaining a consistent structure in everyday life has several ben-
efts – it can alleviate anxiety, promote healthy habits, help combat 
burnout, and can be especially helpful in times of unpredictability, 
uncertainty, and stress. We term this consistent daily structure as 
‘rhythm’. It is defned as a predictable and repeatable pattern that 
brings about comfort and well-being, be it emotionally, mentally, or 
physically. Most prior work studying rhythm or regular daily sched-
ules reports that it is an integral part of a healthy lifestyle [3, 35]. 
Irregularity in diferent social and behavioral rhythms has been 
found to be associated with adverse health outcomes, decreased 
productivity, and diminishing life satisfaction in people [20, 33]. 
Studies report, for instance, that too much variation in behavioral 
rhythms, such as one’s sleep schedule, physical activity, and eating 
behavior, is associated with poorer well-being [25, 36] and perfor-
mance [15, 39]. It is important to note that, whereas most of these 
studies focus on the clinical population, we emphasize rhythms 
associated with the workplace in this current study. While work is 
an integral part of our daily lives, it has also been identifed as one 
of the signifcant sources of human stress [31]. Therefore, we draw 
insight into this critical aspect of work that has been found to play 
an essential role in overall worker well-being. 

In this work, we study N=49 information workers during four 
weeks of regular work. For the purpose of this study, we defne 
an information worker as an individual who engages in tasks that 
involve acquiring, manipulating, and generating information [16]. 
While the majority of the prior work that studies workplace rhythm 
or routine patterns typically relies on self-reports [5, 26, 38], in this 
work, we use custom developed logging software to collect digital 
activity-based workplace rhythm from the information workers, 
in addition to the more typical self-reported data. Such passively-
sensed digital activities are objective and can ofer insights into 
workplace rhythm that may not be available from self-reports. We 
argue that one cannot get a complete picture of workers’ workplace 
rhythm without capturing their digital activity, especially since the 
participants in our study are information workers who spend most 
of their time working on the computer. We perform a series of anal-
yses to identify relationships between the self-reported emotional 
distress of the participants (e.g., stress, anxiety, and depression) and 
deviations in their workplace rhythm derived from their digital 
footprint. Our study expands on the literature around workplace 
rhythm in the following ways: frst, our results identify linkages be-
tween the variability in workplace rhythm of information workers’ 
behaviors and well-being that have not been explored previously; 
and second, while the majority of the prior studies examined clinical 
populations in relation to rhythm or routines, we study information 
workers as they go about their everyday lives. Our work can act as 
a proof-of-concept towards supporting the relationship between 
digital traces of behavior and the subjective well-being perceived 
by information workers. It enables us to envision a system that 
infers the well-being of information workers and detects the early 
onset of chronic issues on the job, such as burnout. 

2 RELATED WORK 
Much of the past work studying work rhythms has focused on the 
time demand aspect of the work, such as the variability in time 

pressure [26] and work schedule [38]. Variability in sleep [34] as 
well as dietary habits [27, 34, 44] such as mealtimes, have also been 
explored either as mediators, or direct antecedents of poorer mental 
well-being at work. Previous work has also shown how irregularity 
in social rhythms [23] is linked to stress, anxiety, depression, and 
even bipolar disorder [21]. Biological or circadian rhythms that 
control functions like sleep are infuenced by workplace stress, 
and their disruption has direct implications for mood regulation 
and mental health. The irregularity or lag in synchronizing these 
internal rhythms to environmental or workplace rhythms disrupts 
sleep and causes mood swings, daytime fatigue, hormonal changes, 
and might even cause gastrointestinal problems [37, 43]. Similarly, 
night-time workers such as nurses, who also sufer from mood 
changes, report higher anxiety levels, poorer work performance 
and higher risk of accidents [12]. With information workers (IWs), 
passive sensing can be used to gain a more objective understanding 
of their workplace behavior [8, 22, 28, 30] and how they relate to 
well-being [29]. 

Some studies on workers’ "routineness" used digital activity or 
sensing data. Brdiczka et al. [5] shadowed ten knowledge work-
ers over 29 days, writing down the details about user tasks and 
task start/end times. The authors concluded that the routineness of 
tasks correlates with the workers’ perceived workload, autonomy, 
and productivity. Tag et al. [41] used electrooculography sensors 
integrated into regular glasses’ frames to unobtrusively and contin-
uously monitor alertness levels throughout the day. In a diferent 
study, Amon et al. [2] used a wearable sensor to measure the health 
regularity of 483 information workers. The authors reported that 
greater regularity in health was associated with higher neuroticism, 
lower agreeableness, and greater interpersonal and organizational 
deviance. Other studies have focussed on sleep, afect [6] as well 
as psychological constructs, such as mood [1, 18]. In our study, we 
report on the association between variability in workplace rhythm 
and the mental well-being of information workers by utilizing their 
digital activity and several self-reported metrics. 

Compared to previous research, one of the primary contribu-
tions of this work is that by using passive-sensing techniques, we 
can examine workplace rhythms more holistically. By studying 
the relationship between telemetry data such as the number of 
emails sent, meetings attended, working hours, mouse movement, 
keyboard, and application activity (amongst many others); we can 
extract patterns that are common in everyday rhythms and that 
afect workers, such as behavioral, social, and biological rhythms 
(as shown in Figure 1). 

3 METHODOLOGY 

3.1 Study Design 
We conducted a naturalistic study of 49 information workers at 
a large technology company in the United States for four weeks 
during the summer of 2021. Participants installed a custom data 
logging software and completed daily, and weekly surveys, with 
daily responses used to generate work rhythms. Emotional distress 
was self-reported weekly and the study was approved by the insti-
tutional review board. Baseline demographic information was also 
collected, and participants received a $300 gift card for completing 
the study. The software used for logging purposes was custom-built 
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Table 1: Summary of behaviors we collect from the participants to capture their workplace rhythms. 

Category Workplace Rhythm Facet 
Self-reported 

Mood Valence, arousal 
Job demand Ratio between job demands and job resources 
Meal habit Breakfast time, lunch time 
Sleep Bedtime, wakeup time, number of awakenings, sleep quality, sleep duration 
Passively-sensed 

Mail Number of emails sent, number of emails received, number of email threads, 
number of CC’d emails 

Calendar Number of meetings attended, working hours, number of tentative meetings, busy duration 
Mouse Mouse movement duration, mouse movement count, mouse movement speed, 

mouse wheel count, mouse wheel speed, mouse wheel duration, number of mouse events 
Keyboard Keypress count, keypress speed, key press duration, number of keyboard events 
Application Usage Number of unique attention signals (i.e., number of times there was keyboard or mouse activity), 

number of unique processes exited, 
number of unique status changed (i.e., number of times the user locks the screen), 
average task switch duration (i.e., average time spent on diferent apps), 
number of foreground applications, average application usage time, 
number of windows closed, number of documents started, number of unique process ids 
number of startups (i.e., number of times the user unlocks the screen), 
number of titles started (i.e., number of times a window is opened) 

to capture digital manifestations of emotional distress and collect 
information on computer-based activities and behaviors. Table 1 
shows the list of behaviors we collected. While we discuss impor-
tant and relevant information from the study regarding workplace 
rhythm, please refer to [24] for full study details. 

3.2 Demographics 
We have an almost even split of participants who identify as females 
(42.86%, N=21) and males (53.06%, N=26). Two of the participants 
identify as non-binary (4.08%). Most participants are in the 26-
35 (36.73%, N=18) and 36-45 (36.73%, N=18) age groups. 4.08% (N=2) 
have attended college, 46.94% (N=23) have a bachelor’s degree, 
2.04% (N=1) have some postgraduate degree, 44.90% (N=22) have a 
master’s degree and 2.04% (N=1) have a doctorate degree. Finally, 
the majority of our participants work in engineering/development 
(59.18%, N=29) related occupation, followed by sales (14.29%, N=7), 
technical support (10.20%, N=5), marketing (6.12%, N=3), strategy 
(6.12%, N=3) and human resources (4.08%, N=2). 

3.3 Ground Truth Emotional Distress 
We used the Depression Anxiety Stress Scales (DASS) [14] survey, 
which consists of 21 questions, to collect ground truth on emotional 
distress from participants. In particular, the survey assesses depres-
sion, anxiety, and stress. Participants answered on a scale of 0-3 
how much each statement applied to them in the past week. We 
then aggregated the scores for each participant to develop an over-
all DASS score for each component. Figure 2 shows the distribution 
of these scores. 

3.4 Measuring Variability in Workplace Rhythm 
3.4.1 Inferred Workplace Rhythms. We infer the participants’ work-
place rhythms across multiple behaviors: their mood, their job 

demands at work, their meal habits, their sleep habits, and the pas-
sively sensed telemetry data collected from their computers. We 
discuss the inferred behaviors in more detail below. 
Sleep: Participants were asked to self-report their sleep from the 
previous night at the start of each day. They were asked about the 
time they went to bed, the time they got out of bed, the number of 
awakenings, and the sleep quality on a scale of 1-5 (1 being poor 
and 5 being excellent). 
Mood: We assessed participants’ mood by asking them to rate their 
level of energy and pleasantness experienced that day, using a Lik-
ert scale from 1-5 (1 being the least and 5 being the highest). These 
questions captured two components of mood: valence (positive or 
negative) and arousal (intensity of the experience). Valence refers 
to whether the experience was pleasant or unpleasant, whereas 
arousal refers to the level of energy experienced. 
Job demands and resources: Jobs have two main variables: de-
mands and resources. Demands refer to tasks that must be done 
and can have a psychological or physiological cost to the worker. 
Resources are factors that help workers achieve their goals, deal 
with demands, or promote growth. The relationship between de-
mands and resources is studied in organizational psychology. In 
particular, the Job demand-resources model (JD-R) [4] argues that 
a balance between the two is important to avoid negative efects on 
job satisfaction, stress, and burnout [9]. In this study, participants 
were asked to rate their perceived job demands and resources at 
the end of the day on a scale from 1-5. 
Meal habit: We also asked participants to report the kind of meal 
they had before the end of each working day and when they con-
sumed each. 
Digital activity: Participants installed a custom passive sensing 
application on their work computer for the study. The application 
runs in the background and generates high-level metadata based 
on the participants’ computer usage (see Table 1). Note that the 
logger does not collect any identifable user content. 
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Figure 2: Distribution of stress (left), anxiety (center), and depression (right) scores across participants. The higher the partici-
pants’ score on the X-axis, the higher their emotional distress. X-axis ranges from 0 to 32.5 for the diferent metrics. 

3.4.2 Variability Metric. Prior studies showed that work rhythm 
typically follows a weekly pattern [19, 40]; therefore, we frst gen-
erate a week-to-week variability for all the previous behaviors. We 
then calculate the average of the variability across all weeks to come 
up with an overall variability metric for each behavior and person. 
The calculation of the weekly variability metric is adapted from a 
prior work [11] and can be seen in Equation 1. We use this simple 
frequency-based variability metric to study workplace rhythms as 
it is straightforward and intuitive. 

∑ 1 
�� �� ��� � 

� ������������ = (1)
�� ������ �=1 

where, ������������� indicates the variability of person � for be-
havior � , �� ��� � indicates the standard deviation of behavior � 
of person � over week � , ������ indicates the average value of 
behavior � of person � over � weeks of data available for person � , 
and �� indicates the number of weeks for which data is available 
for person � . 

4 ASSOCIATION ANALYSIS 

4.1 Self-reported Workplace Rhythm Variability 
We created ten variables from our self-reported work-life behav-
iors and calculated the variability across these variables. We then 
correlated the variability with participants’ depression, anxiety, 
and stress scores. The results are shown in Table 2, corrected for 
multiple comparisons using the Benjamini-Hochberg procedure. 
Correlation with raw scores was generated after calculating within-
participant averages of the associated variable across all days. The 
statistically insignifcant results are grayed out in the table. To bet-
ter understand the potential relationship between variables, the 
table includes a Variability column, which shows correlations with 
the variability of the associated metric, and the Raw column, which 
shows correlations with the average values of the metric for each 
participant. 

We found that high variability in the self-reported workplace 
rhythm is associated with higher emotional distress in the par-
ticipants. Variability in valence was moderate-to-strongly corre-
lated with participants’ stress (�=0.45), anxiety (�=0.44) and depres-
sion (�=0.66). Similarly, arousal variability was positively associated 
with anxiety (�=0.37) and depression (�=0.44). We also found that 

Table 2: Correlations between self-reports (both raw values and their variability) and participants’ stress, anxiety and depression 
scores (*** p < .01, ** .01 ≤ p < .05, ∗ .05 ≤ p ≤ .10). 

Stress Anxiety Depression Metric Variability Raw Variability Raw Variability Raw 

Valence 
Arousal 
Job demands 
Breakfast time 
Lunch time 
Bedtime 
Wake-up time 
Number of awakenings 
Sleep quality 
Sleep duration 

0.45*** 
0.20 
0.22 
-0.08 
0.21 
-0.04 
-0.11 
0.11 
0.34** 
-0.01 

-0.40** 
-0.22 
0.36** 
-0.08 
0.09 
-0.30 
0.12 
0.21 
-0.37** 
0.26 

0.44*** 
0.37** 
0.25 
0.13 
0.38* 
-0.01 
0.07 
0.10 
0.28 
0.02 

-0.33** 
-0.26 
0.26 
0.10 
0.14 
-0.19 
0.07 
0.26 
-0.28** 
0.44*** 

0.66*** 
0.44*** 
0.31* 
0.01 
0.29 
-0.04 
0.08 
0.09 
0.13 
0.19 

-0.55*** 
-0.36** 
0.47*** 
-0.29 
-0.10 
-0.24 
0.10 
0.25 
-0.36*** 
0.25 
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higher variability in job demands is associated with higher depres-
sion (�=0.31). In terms of meal habits, variability in lunch time 
was positively correlated with the anxiety of participants (�=0.38). 
Among sleep-related variables, variability in self-reported sleep 
quality and stress levels are positively correlated (�=0.34), i.e., the 
higher the variability in sleep quality, the higher the stress. Some 
relationships were fipped when analyzing the association between 
raw values of self-reports rather than the variability. For example, 
while variability in valence was positively associated with all emo-
tional distress metrics, raw values were negatively associated with 
stress (�=-0.40), anxiety (�=-0.33), and depression (�=-0.55). The 
relationship between job demands was an exception, as both its raw 
values (�=0.47) and variability (�=0.31) were positively associated 
with depression. Some variables only had a signifcant relationship 
with their variability and not with their raw values, while for some 
variables, only the raw values were correlated. For example, vari-
ability in arousal was positively associated with anxiety (�=0.37). 
However, its raw value was not, whereas sleep duration’s raw value 
was signifcantly correlated with anxiety (�=0.44), but its variability 
was not. 

4.2 Digital activity-based rhythm 
We repeated a similar association analysis with the digital activity 
data that was passively collected. We list the results in Table 3. 
As with the variability in self-reported rhythm, the results were 
corrected for multiple comparisons using the Benjamini-Hochberg 
procedure. 

Unlike self-reported variability, the correlation results based 
on digital activity showed a negative relationship with emotional 
distress. An increase in variability of the number of foreground 
applications (�=-0.43) and the number of startups (�=-0.38) was 
associated with decreased participants’ stress. We see similar rela-
tionships with mouse move speed (�=-0.33), average mouse move 
events (�=-0.31), the number of unique attention signals (�=-0.38), 
the number of unique status changes (�=-0.44), keypress speed (�=-
0.30), the average number of keypresses (�=-0.33), and number of 
titles started (�=-0.32). The variability in the number of busy slots 
on the calendar (�=-0.34) and the number of email threads (�=-
0.29) was also negatively associated with participants’ stress. We 
see a similar association with anxiety as well—the variability in 
active duration (i.e., time spent working on the computer; �=-0.40), 
the number of startups (i.e., number of times the user unlocks the 
screen; �=-0.34), and number of unique status changed (i.e., number 
of times the user locks the screen; �=-0.30) were all negatively asso-
ciated with it. However, most raw digital activity variables did not 
signifcantly correlate with emotional distress. Only a few variables, 
such as the number of foreground applications (�=0.34) and average 
task switch duration (�=0.33), were signifcantly correlated with 
stress and depression scores, respectively. Note that we listed only 
digital activities with at least one statistically signifcant correlation 
with the emotional distress metrics after correcting the p-value for 
multiple comparisons. 

5 DISCUSSION 

5.1 Summary of results 
Our results indicate a relationship between workplace rhythm 
and emotional distress. We fnd that higher variability in valence, 
arousal, lunch time, and sleep quality are associated with increased 
stress, anxiety, and depression. These fndings are in line with ex-
isting studies that link meal time irregularity [25, 42, 45] and sleep 
irregularity [17, 36] to poorer mental well-being, and job demand 
variability to higher job strain [10] and reduced performance [13]. 
While variations in self-reported workplace rhythms are positively 
associated with stress, anxiety, and depression, the opposite is true 
for digital activity-based rhythms. Digital activity-based rhythms 
are negatively correlated with stress, anxiety, and depression. 

Note that both the self-reported and objective digital activity-
based variables follow a similar trend – when a metric’s variability is 
negatively correlated with DASS scores (i.e., well-being outcomes), 
its raw/mean value is positively correlated with DASS scores and 
vice versa. This might help explain why the variability in digital 
activity is negatively associated with emotional distress outcomes. 
For example, we fnd that the raw value of the number of fore-
ground applications is positively associated with stress, meaning 
that the higher the number of foreground applications, the higher 
the stress. This hints that in our observations, most participants 
who report high stress also exhibit a higher value for the number 
of foreground applications. One possible explanation could be that 
higher number of foreground applications might refect participants 
working more or harder and this might explain why variability in 
digital activity is better – it may add periods with relatively less 
work in their work rhythm (which might ofer a moment of respite 
or a moment to recharge after a sustained period of high workload). 
Hence, the reason why variability is suitable for our participants 
might be because they repeatedly have higher raw values for their 
digital activity (indicating high workload or high work activity). 
We could also look at these fndings in another way. Highly stressed 
participants may use more applications on average, resulting in 
high regularity (or less variability) in the number of foreground 
applications. Hence, the variability in the number of foreground 
applications is negatively related to stress. Although we take the 
number of foreground applications as an example, most digital 
activity streams (raw and their variability) show a similar relation-
ship. These results indicate that regularity in work rhythms may 
not always be healthy behavior. Higher variability may provide 
opportunities for self-care, relaxation, breaks, and change of pace, 
which can help to reduce stress and improve overall well-being. 

5.2 Implications 
Our fndings demonstrate that we require a more holistic approach 
emphasizing workplace rhythms and their absolute/average levels 
to improve mental well-being in the workplace. Variations in work-
place habits (and lifestyle habits, in general) such as sleep, eating, 
job demand, resources, and emotion, as well as digital activity-based 
rhythms, matter, rather than simply focusing on the absolute value 
of these facets, independent of their variability. As a result, our fnd-
ings may be useful for providing more efective and specifc health 
guidance in the future to both employees and employers. There may 
be some relatively simple actions that individuals can undertake 

https://��=-0.30
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https://��=-0.34
https://��=-0.32
https://��=-0.33
https://��=-0.44
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https://��=-0.33
https://��=-0.38
https://��=-0.43
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https://��=-0.33
https://��=-0.40
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Table 3: Correlations between passively collected digital activity (both raw values and their variability) and participants’ stress, 
anxiety and depression scores (*** p < .01, ** .01 ≤ p < .05, ∗ .05 ≤ p ≤ .10). 

Stress Anxiety Depression Metric Variability Raw Variability Raw Variability Raw 

Number of mail threads -0.29* -0.14 -0.25 0.10 -0.14 -0.20 
Busy slots on calendar -0.34** -0.03 -0.04 -0.17 -0.07 -0.15 
Keypress speed -0.30* 0.06 -0.16 0.04 -0.20 0.03 
Average number of keypress -0.33* 0.04 -0.10 0.16 -0.08 0.00 
Mouse move speed -0.33* 0.05 -0.16 0.10 -0.22 0.11 
Average mouse moves -0.31* -0.02 -0.12 -0.07 -0.26 -0.14 
Number of unique processes exited -0.28 0.18 -0.17 0.03 -0.30* 0.19 
Number of unique status changed -0.44*** 0.34* -0.30* 0.11 -0.37** 0.27 
Number of foreground applications -0.43*** 0.34* -0.29 0.11 -0.36** 0.27 
Number of startups -0.38** 0.07 -0.34** 0.19 -0.41** 0.12 
Number of titles started -0.32* 0.09 -0.27 0.06 -0.27 -0.07 
Average task switch duration -0.23 0.16 -0.03 0.12 -0.11 0.33* 
Number of unique attention signals -0.38** 0.29 -0.24 0.06 -0.33* 0.24 
Active duration -0.19 0.02 -0.40* 0.21 -0.17 -0.24 

in order to improve their well-being. This could include trying to 
maintain consistency in one’s lunch time routine or focusing on 
improving the quality of one’s sleep. Both mealtimes and sleep are 
deeply associated with an individual’s lifestyle. IWs can make an 
efort to keep them as regular as possible. In parallel with individual 
actions, employers could implement measures in the workplace 
that help promote consistency in workplace rhythm, which would 
be benefcial. This could be achieved by having appropriate policies, 
such as encouraging teams to avoid meetings or work-related tasks 
during employees’ pre-set lunch periods. 

We fnd that particular workplace rhythm patterns are associ-
ated with specifc emotional distress outcomes. Intervening HCI 
designs could use these fndings to detect behaviors or disruptions 
in rhythms that relate to adverse mental well-being outcomes early 
on. Early detection of disruptions to work rhythm would help ofer 
appropriate interventions to prevent poor chronic health conditions 
from developing. In addition, knowing the relationship between 
particular workplace rhythms and well-being enables us to design 
technologies in a preventative way [7, 32]. In other words, we 
should design workplace policies to support well-being by making 
achieving an individual or team’s optimal workplace rhythm more 
likely and efortless. 

5.3 Privacy and Ethical Considerations 
In conducting this study, we took measures to protect the confden-
tiality of the participants by collecting only high-level digital activ-
ity data. We obtained informed consent from the participants, ex-
plaining the purpose and use of the study. We also ensured that the 
participants had the right to withdraw from the study at any time 
without penalty. All the data were anonymized and de-identifed for 
the analysis. We also securely store the data, limiting access only 
to authorized personnel. We acknowledge that the use of digital 
data raises concerns about data privacy and security, and we were 
careful to adhere to data protection regulations and best practices. 
Furthermore, we emphasize the importance of using these results 
responsibly and ethically to support the well-being of workers and 
the promotion of a healthy workplace culture. 

5.4 Limitations and Future Work 
Although we collected data from 49 IWs, they all belonged to the 
same company, which may have infuenced some fndings. Further 
research is necessary to assess generalizability by examining larger 
populations and diferent companies. In addition, the four-week 
enrollment period limited our ability to capture slow-changing base-
lines and longer-term variability, which could be addressed in future 
studies by examining participants for more extended periods and at 
various times of the year. While this study used a frequency-based 
variability metric, more complex metrics, and granular data could 
provide additional insights into workplace rhythms and their rela-
tionship with worker well-being. We analyzed only high-level meta-
data to protect the privacy and did not consider content. However, 
considering meeting content, such as its importance or controversy, 
may provide valuable insights into how routines afect workers’ 
well-being. Furthermore, future studies should gather qualitative 
insights from participants to clarify the meaning of higher variabil-
ity. Other sensing modalities, such as wearables and phones, could 
also be used to capture a more comprehensive view of workplace 
rhythms and well-being. 

6 CONCLUSION 
This study examined the relationship between the variability of 
information workers’ workplace rhythms and their self-reported 
emotional distress. We used self-reports and digital activity to gen-
erate our metric of workplace rhythm and found that less variability 
in self-reported mood, job demands, meal habits, and sleep quality 
was linked to better well-being. In contrast, less variability in digi-
tal activity was linked to more emotional distress, indicating that 
higher variability in digital activities was associated with better 
well-being outcomes. This may signal that not all habits or con-
sistent behaviors are benefcial. We hope our research contributes 
to understanding the connection between workplace rhythms and 
well-being in the workplace. 
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