
133

The Power of Speech in the Wild: Discriminative Power of Daily Voice
Diaries in Understanding Auditory Verbal Hallucinations Using Deep
Learning

WEICHEN WANG, Dartmouth College, USA
WEIZHE XU, University of Washington, USA
AYESHA CHANDER, University of Washington, USA
SUBIGYA NEPAL, Dartmouth College, USA
BENJAMIN BUCK, University of Washington, USA
SERGUEI PAKHOMOV, University of Minnesota, USA
TREVOR COHEN, University of Washington, USA
DROR BEN-ZEEV, University of Washington, USA
ANDREW CAMPBELL, Dartmouth College, USA

Mobile phone sensing is increasingly being used in clinical research studies to assess a variety of mental health conditions
(e.g., depression, psychosis). However, in-the-wild speech analysis – beyond conversation detecting – is a missing component
of these mobile sensing platforms and studies. We augment an existing mobile sensing platform with a daily voice diary to
assess and predict the severity of auditory verbal hallucinations (i.e., hearing sounds or voices in the absence of any speaker), a
condition that affects people with and without psychiatric or neurological diagnoses. We collect 4809 audio diaries from N=384
subjects over a one-month-long study period. We investigate the performance of various deep-learning architectures using
different combinations of sensor behavioral streams (e.g., voice, sleep, mobility, phone usage, etc.) and show the discriminative
power of solely using audio recordings of speech as well as automatically generated transcripts of the recordings; specifically,
our deep learning model achieves a weighted f-1 score of 0.78 solely from daily voice diaries. Our results surprisingly indicate
that a simple periodic voice diary combined with deep learning is sufficient enough of a signal to assess complex psychiatric
symptoms (e.g., auditory verbal hallucinations) collected from people in the wild as they go about their daily lives.
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1 INTRODUCTION
Auditory Verbal Hallucinations (AVHs) are a sensory experience ranging from auditory imagery and vivid
thoughts to fully developed hallucinations of hearing sounds and voices in the absence of any speaker [29, 58].
Although people with serious mental illness are more likely to experience AVHs (e.g., 60–80% of people diagnosed
with schizophrenia [3]), AVH is also experienced by people with a variety of mental health diagnoses (e.g.,
anxiety, depression, functional impairment [42, 52]) as well as by people who have no identifiable psychiatric or
neurological diseases [27, 66, 105]. It has been observed that individuals living with AVH require varying levels
of treatment and needs and their clinical status can change throughout the course of their lives [58]. As a result,
AVH represents a complex set of experiences that occur in a variety of forms across a wide range of people. Given
this, there is a need to better understand the impact and severity of AVH across different population groups from
those diagnosed with serious mental illness to those that have no such identifiable psychiatric impairment [29].

Retrospective self-report measures are commonly used in clinical settings to gain insights into the subjective
experiences of auditory verbal hallucinations (AVH). However, these measures pose unique challenges. Patients
with severe AVH symptoms often come from economically disadvantaged and socially isolated communities that
lack adequate treatment resources [74, 99]. Additionally, some patients may be reluctant to seek treatment due
to disagreement with the diagnosis or negative attitudes towards mental health services [70]. Those with less
severe AVH may choose not to engage in traditional clinical settings due to stigma-related concerns [44, 46]. To
address these limitations, recent clinical research projects have turned to the use of mobile phones and wearable
technology to gather continuous behavioral data [8]. These studies have demonstrated connections between
mobile sensing and behavioral markers of mental health [6, 80, 96, 114].
Despite the advantages offered by existing mobile sensing platforms, such as StudentLife [115], Aware [39],

Beiwe [86], and others, in accurately monitoring patients’ behavior in everyday life, there has been limited
work on analyzing patients’ speech collected from mobile phones. The result is that current mobile sensing-
based approaches are overlooking valuable information that could be obtained from everyday human speech
in the naturalistic environment. Research suggests that speech patterns, such as incoherence [4], limited pitch
variation [50], prolonged pause duration [92], and lexical diversity [22, 28, 126], can provide valuable insights
into mental health. For example, Minor et al. [78] used an "electronic audio recorder" in real-world settings to
better understand psychosis risk, demonstrating the feasibility of using audio recordings to assess real-world
expressions of personality and functioning in schizotypy. However, the predictive value of this approach has not
yet been determined. This paper addresses the question of whether combining the power of speech in the wild
with mobile sensing technology can improve our understanding of AVHs, and how much merit it can bring to
the current mobile sensing system.

In this paper, we report on the discriminative power of using speech and content (e.g., transcription) to assess
the severity of AVH. We augment the StudentLife [115] mobile sensing app to solicit speech via a daily voice diary
Ecological Momentary Assessment (EMA). Figure 1 shows the user interface of the daily voice diary. The voice
EMA randomly prompts the user four times per day between the hours of 9 am and 9 pm. Participants can also
open the app at any time to manually respond to the voice diary survey. The EMA allows participants to record a
brief audio diary detailing how they are feeling (see Figure 1). The question that prompts the user is quite open
in nature. Furthermore, we tell participants not to overthink how they present their thoughts: “It does not have
to be perfect. In fact, we don’t want it to be. We want it to be real, and true to you. What would you like to share

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 3, Article 133. Publication date: September 2023.

https://doi.org/10.1145/3610890


The Power of Speech in the Wild: Discriminative Power of Daily Voice Diaries in Understanding Auditory Verbal Hallucinations... • 133:3

with the research team?”. In our study, we collected one month of mobile sensing data from N=384 participants.
More importantly, we obtained a high volume of voice in the naturalistic environment: a total of 4809 voice
diaries were collected, of which 3033 are longer than 30 seconds. While we collect and analyze all StudentLife
sensing streams (e.g., phone usage, conversational interaction, mobility, activity, sleep), we focus on the power
of human speech to assess and predict the severity of AVH. We use the Hamilton Program for Schizophrenia
Voices Questionnaire (HPSVQ) [113] as ground truth that measures the severity of AVH. The HPSVQ is a 9-item
questionnaire with a five-point Likert scale rated from 0 to 4. It has excellent test-retest reliability (𝑟 = .84) and
internal consistency (Cronbach’s 𝛼 = .94). A total HPSVQ score above 26 indicates severe AVH. The HPSVQ
scores are dichotomized to derive discrete categories as targets for classification. We design a specialized deep
learning architecture to handle multimodal sensing streams (including audio, text and other behavioral sensing
data) to predict AVH severity. We do this to best understand the discriminative power of voice. Specifically, we
compare and contrast the performance of deep learning models built from (i) only mobile sensing data; (ii) only
voice diaries (i.e., audio and transcribed text); and finally (iii) a fusion of mobile sensing data and voice diaries.
We also consider both manually and automatically transcribed voice diaries in our modeling and analysis.

Fig. 1. User interface of the daily voice diary in study app. (A) Welcoming page (B) Recording page.

The contribution of the paper is as follows. First, to the best of our knowledge, we are the first group to study
how in the wild daily voice diaries can improve current mobile sensing platforms and predict AVH severity
with good performance. We extend an existing and widely used mobile sensing platform for mental health with
voice diaries and evaluate various deep neural network architectures step by step, beginning with Bi-direction
Gated Recurrent Units (Bi-GRU) [20] and progressing to models with self-attentive embeddings [69], in order
to understand the strengths and weaknesses of using each type of data (i.e., sensor data, audio and transcripts)
and to find the best architecture that can fully utilize such rich and diverse multi-modal data for assessing AVH
severity. Specifically, we propose a deep neural network architecture with self-attention that achieves a weighted
f-1 score of 0.84 combining sensor data, audio data of the speech and professionally generated transcripts, and a
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macro f-1 score of 0.81 when manually generated transcripts using an automated speech recognition transcription
method. A deep neural network model based solely on mobile sensing achieves a weighted f-1 score of 0.65, while
a model based solely on voice diary (i.e., audio + text) achieves a weighted f-1 score of 0.78. Our results indicate
that periodic voice diaries combined with deep learning alone have sufficient power for assessing a complex
condition such as AVH in the wild.

The structure for the rest of the paper is as follows. We describe the related work in Section 2. In Section 3, we
discuss our study and data collection. We describe how we preprocess our data in Section 4 and Section 5. We
present our deep learning architecture and performance results in Section 6. We investigate the interpretation in
Section 7. We discuss the performance of using a fully automatic pipeline using Automated Speech Recognition,
as well as the implication of our work in Section 8. Finally, we offer some concluding remarks in Section 8.

2 RELATED WORK
Mobile technologies have the advantage of passively collecting context-based in-situ data, which can be utilized
to make various inferences regarding user behavior. The widespread use of smartphones, equipped with a range
of embedded sensors such as accelerometers, GPS, microphones, and cameras, provides an opportunity to gain
deep and continuous insights into the behavior of individuals diagnosed with mental health illnesses. Clinical
research projects have recently embraced mobile phones and wearable sensing technology to collect continuous
behavioral data. Studies have found correlations between behavioral sensor data obtained from smartphones and
various mental health conditions, including anxiety [14, 96], depression [82, 88, 97, 118, 121], bipolar disorder
[47, 94], and serious mental health conditions such as schizophrenia [11, 12, 117, 120]. These findings demonstrate
the potential of mobile technologies for facilitating mental health diagnosis and management.

Much of the prior research in the field of mental health and speech primarily operates in controlled laboratory
settings, such as recording individuals with schizophrenia reading emotionally neutral text [92]. These studies
have demonstrated that linguistic content (e.g., lexical diversity, patterns of word usage, semantic coherence,
verbal fluency) [22, 28, 126] and acoustic parameters (e.g., intonation, pitch, jitter, energy [25]) can both provide
insights into mental health. Some early attempts have been made to collect speech-related features via mobile
sensing. In one of the initial studies, Muaremi et al [83] employed phone call statistics, social signals extracted
from phone conversations, and acoustic features of the voice to predict bipolar states in a cohort of 12 individuals
who suffered from bipolar disorder. The CenceMe app [77] implemented an always-on voice activity detector and
higher-level conversation classifier on the phone to passively determine how much conversation a user is around.
Early work by Lu [71] used passive speech analysis to model stress on an Android phone using prosody, pitch,
volume, and intonation. Recently, Verily found [85] pairwise correlations between four basic audio parameters
(average pause duration, duration of self-recorded audio) and transcribed text (speaking rate, sentiment score)
from a 12-week depression research. These works are limited in scope and provide only a limited understanding
of speech-related behaviors. To date, there has been no systematic investigation into the full predictive power of
speech in natural settings and how it can be leveraged through mobile sensing technology.

Within the field of neural science, there are proponents who assert that auditory verbal hallucinations (AVH) are
indicative of an auditory dysfunction [75]. However, the majority of scholars associate this form of hallucination
with a speech disorder [43, 53]. It has been discovered that the dysfunction of brain regions responsible for speech
production may serve as a fundamental mechanism for the occurrence of AVH in individuals with schizophrenia
[107]. Empirical data suggests the presence of electrophysiological abnormalities [68] in the cortices responsible
for auditory and speech perception, specifically in Wernicke’s area, which is associated with speech perception,
and Broca’s area, which is associated with speech expression [51, 95]. Studies on auditory perception in individuals
with schizophrenia spectrum disorders have revealed impairments in tone matching and pitch discrimination
performance for non-verbal sounds [33]. Neuroimaging studies have also found revealed that in individuals with
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AVH, neural activation is lateralized towards the language-related areas of the right hemisphere [106]. However,
in the majority of individuals, language production is primarily associated with activation in the left hemisphere
[65]. The linguistic abilities of individuals diagnosed with schizophrenia have been found to be compromised in
several ways, including decreased embedding, shorter phrase length, and increased grammatical errors [41, 81].
Individuals who experience clinical AVH tend to utilize a reduced number of determiners and prepositions,
employ shorter utterances, and exhibit a greater prevalence of negative content [23].
The rapid advancement in speech processing technology enables the use of virtual assistants such as Google

Assistant, Amazon’s Alexa, and Apple’s Siri [67]. These virtual assistants rely on deep learning algorithms and
always-on speech processors to recognize hot words (e.g., Ok Google) and initiate interaction with the user.
However, this method of collection is not practical for mental health studies due to the inability to differentiate
between consented and non-consented speech. Instead, we consider Ecological Momentary Assessment (EMA),
an alternative approach for collecting real-time data (including human speech) on AVH. Previous studies using
EMA have demonstrated correlations between AVH and factors such as time of day [13], anxiety [49], emotional
state [30], and cardiac autonomic control [62]. A mobile application that employs EMA to collect AVH-related
ground truth from participants has also been developed [104]. Given the potential of vocal and lexical features of
speech as predictors of AVH, a useful next step involves examining predictors of AVH using these attributes.

3 STUDY AND DATASET

3.1 Procedures and Participants
The study was approved by the Institutional Review Board (IRB) of the institution [Institution details omitted
during anonymous review]. Participants were recruited remotely over the Internet or through community-based
strategies. Participants had to be at least 18 years old, English speakers residing in the United States, and have
AVH at least once a week 1. It was also required that they have an Android phone and a data plan. Online
recruiting was carried out with the help of Google Ads. Google displayed our ads to those whose search history
matched pre-defined keywords. We chose keywords based on a study of the literature [24], consultation with
researchers on mental illness, and a survey of blogs written by people living with AVH. The keywords contained
both clinical terminology (e.g., schizophrenia, bipolar disorder, hearing voices) and non-clinical explanations of
AVH (e.g., talking to ghosts, going crazy). If participants clicked on the Google advertisements, they were sent
to our recruitment website. The website included detailed infographics and videos that describe the projects
in depth. On our website, participants were able to verify their phone number, answer screening questions,
agree to the study, complete the baseline evaluation, and download the study Android app. Community-based
recruiting were through flyers and referrals. Our research staff prescreened the participants over phone and
scheduled in-person study visits. During the visit, research staff directed participants to the study’s website and
assisted them with the same procedures as those who were recruited online.

A total of 384 individuals with AVH (305 recruited online; 79 recruited in the local community) from 41 US states
participated in the study and completed data collection. All participants were required to carry a smartphone
and respond to EMAs for 30 days. Only if a participant adhered to the 30-day data collection period is he or she
regarded to have completed the data collection (those who dropped out during the study are not included in
the 384 participants). Participants could directly contact research personnel to ask questions or get technical
help. The data were firstly stored locally on the phone and transferred to secure research servers when the phone

1The National Institute of Mental Health’s Research Domain Criteria (RDoC) [26] is a research framework that guides AVH research on
a continuum [40]. Our research, informed by the RDoC framework, focuses on the phenomenology of AVH to elucidate the distinctions
between individuals who experience severe AVH symptoms in the context of a clinical disorder and those who encounter AVH without the
need for clinical intervention. Therefore, the screening questionnaire is designed to exclude non-AVH individuals, as they fall outside the
scope of this study.
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detects a connection to the Internet. The study app ceased delivering data to the study team after 30 days. All
participants were compensated $125 for participating. Table 1 shows the demographics of the participants.

Table 1. Demographics of the participants.

Category Count Percentage
Sex

Female 192 50.0%
Male 176 45.8%
Transgender: MTF 7 1.8%
Transgender: FTM 5 1.3%
Other: 4 1.0%
Race

White 238 62.0%
Black or African American 80 20.8%
Asian 7 1.8%
American Indian / Alaska Native 6 1.6%
More than one race 49 12.8%
Missing / Declined 4 1.0%
Ethnicity

Hispanic / Latino 58 15.1%
Not Hispanic / Latino 324 84.4%
Missing / Declined 2 0.5%

3.2 Ground Truth
We administered the Hamilton Program for Schizophrenia Voices Questionnaire (HPSVQ) [113] once at the start
of the study period (i.e., during the enrollment). HPSVQ is a 9-term self-report measure that received psychometric
support [113] for assessing AVH severity. The nine 5-point rating scale components quantify AVH features such
as frequency, negative content, loudness, duration, interference with life, distress, influence on self-appraisal,
and command compliance. A higher score indicates more severe auditory hallucinations. HPSVQ has shown
high test-retest reliability and internal consistency. Furthermore, it has exhibited good concurrent validity [113]
when compared to the widely used interviewer-rated Psychotic Symptoms Rating Scales (PSYRATS) [48]. HPSVQ
indicates a total score of 0 to 13 for minimal/mild, 14 to 25 for moderate, and 26 and above for severe levels. The
ground truth of prediction was derived from these categories.
According to the HPSVQ, 27.4% of individuals in our study exhibited severe AVH (score > 25). Those with

scores <= 25, encompassing minimal, mild, or moderate AVH, are classified as having non-severe AVH. Severe
AVH is associated with depression, functional impairment, and schizophrenia spectrum disorders (SSDs) [52] and
often requires clinical intervention. Identifying factors that distinguish severe AVH holds clinical significance, as
it may contribute to the development of targeted treatments for individuals with AVH requiring intervention,
as well as preventive strategies for subclinical populations so they do not progress in the psychotic trajectory.
Consequently, we opt for a meaningful threshold suggested by the HPSVQ for our severe/non-severe AVH binary
classifier’s ground truth, rather than employing a threshold from our dataset that yields balanced 50-50 labels.

3.3 Dataset
The Android study application is an upgraded version of a system used and validated in prior research [10, 79,
111, 115, 119, 120] that has been tailored to the demands of this study. The study application captures signals
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from a variety of embedded sensors (e.g., GPS, screen lock/unlock, light, microphone, accelerometer) to infer
participant behavior (e.g., mobility, phone usage, physical activity, etc). We further developed a dashboard for
research assistants to monitor user compliance.

(a) Number of voice diaries recorded at different time of
the day (b) Duration of voice diaries recorded

Fig. 2. We received 4809 audio diaries in all. (a) The majority of the voice diaries were recorded between the hours of 9 a.m.
and 9 p.m., when the voice EMA randomly prompts. Others were recorded before or after the typical EMA time. (b) Many
voice diaries are less than 30 seconds and contain simply random noise or a few words that are insufficient for analysis. There
are also a significant number of audio diaries ranging in length from 2.5 minutes to 3 minutes (the maximum length allowed
by the application).

We collected 30-day passive sensing data from 384 participants. We asked participants to optionally record a
voice diary to share what they were experiencing or anything else they want to share with the research team.
The voice EMA randomly prompts the user four times per day between the hours of 9 am and 9 pm. Participants
can also open the app at any time to manually respond to the voice diary survey. Participants can record a voice
diary of up to 3 minutes in length. The voice diaries are stored on the phone and uploaded to our secure server
backend. Although the voice diary is optional and no extra incentives were offered for it, most participants
submitted their recordings. We received a total of 4809 voice diaries, the distribution of which is depicted in Fig.2.
There are a number of voice diaries that are less than 30 seconds long and contain only random noise or a few
words that are insufficient for analysis and are thus eliminated from the analysis in this study. As such short
recordings seldom contain interpretable language, we restrict this collection to recordings lasting 30 seconds
or more, leaving 3033 records from 229 users. These 3033 voice diaries were professionally transcribed. The
analysis in this paper is based on the 229 users who provided complete 30-day mobile sensing data as well as at
least one transcribed voice diary. Among the 229 users, 31.9% exhibited severe AVH, a proportion slightly higher
than the 27.4% ratio observed among the total recruited participants, as discussed in Section 3.2. In this paper,
we refer to "audio/speech data" as the audio signals from the recordings and "text data" as the transcribed text
from the voice diaries. In addition, we used our in-house automatic voice recognition system to create another
batch of transcriptions. We also include an analysis in which we compare the results of employing manually and
automatically generated transcripts (Section 7.2).

Fig.3 illustrates the word cloud of the audio diaries. Intriguingly, the word cloud plots of people with non-severe
and severe AVH are similar; they both notably include keywords such as ’voice’ and ’hear,’ indicating that we
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(a) Audio diaries from people with non-severe AVH (b) Audio diaries from people with severe AVH

Fig. 3. The word cloud of audio diaries among people with non-severe and severe AVH

need to develop a more comprehensive approach of AVH prediction than only examining the frequency of such
words.

4 DATA PREPROCESSING
This data set includes mobile sensing data, audio data from voice diaries, and transcribed text. In this section, we
demonstrate how data preprocessing is used to transform unstructured data collected in the wild into well-formed
data sets that can be used for further analytics.

Deep learning algorithms, including RNNs, have recently demonstrated exceptional performance without the
need for handcrafted features when dealing with sequential data such as text streams, audio snippets, video clips,
and time series data [100]. However, because deep machine learning is a black-box technology, the majority of
individuals are unable to link the results to an explanation that is human-comprehensible. Such interpretable
descriptions are essential for establishing trust between patients and clinicians in the context of practical health.

In our study, we employ both interpretable feature engineering and data preprocessing for deep learning. We
perform feature engineering in order to (1) determine the benchmark performance of AVH severity prediction
with traditional machine learning models and (2) provide interpretations for representations learned by deep
learning models. In addition, we perform data preprocessing for deep learning so that multi-modal time series
data can be properly fed to advanced deep models.

4.1 Interpretable Feature Engineering for Traditional Machine Learning
4.1.1 Acoustic Features. We extract acoustic features from speech signals using the open-source toolkit openS-
MILE (open-source Speech andMusic Interpretation by Large-space Extraction) [37, 38]. OpenSMILE is extensively
used for automatic emotion recognition in affective computing. We compute acoustic features included in the
Geneva Minimalistic Acoustic Parameter Set (GeMAPS) [36], a state-of-the-art standard acoustic parameter set
for various areas of automatic voice analysis, such as paralinguistic or clinical speech analysis.
First, 18 low-level descriptors (LLDs) are calculated on each frame (a short fragment that contains a few

thousands of samples) of audio signals, including:

6 Frequency related parameters
Pitch: logarithmic F0 on a semitone frequency scale, starting at 27.5 Hz.
Jitter: deviations in individual consecutive F0 period lengths.
Formant 1, 2, and 3 frequency: center frequency of first, second, and third formant.
Formant 1: bandwidth of first formant.

3 Energy/Amplitude related parameters
Shimmer: difference of the peak amplitudes of consecutive F0 periods.
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Loudness: estimate of perceived signal intensity from an auditory spectrum.
Harmonics-to-noise ratio (HNR): relation of energy in harmonic components to energy in noise-like
components.

9 Spectral parameters
Alpha Ratio: ratio of the summed energy from 50-1000 Hz and 1-5 kHz.
Hammarberg Index: ratio of the strongest energy peak in the 0-2 kHz region to the strongest peak in
the 2–5 kHz region.
Spectral Slope 0-500 Hz and 500-1500 Hz: linear regression slope of the logarithmic power spectrum
within the two given bands.
Formant 1, 2, and 3 relative energy: the ratio of the energy of the spectral harmonic peak at the first,
second, and third formant’s center frequency to the energy of the spectral peak at F0.
Harmonic difference H1-H2: ratio of energy of the first F0 harmonic (H1) to the energy of the second
F0 harmonic (H2).
Harmonic difference H1-A3: ratio of energy of the first F0 harmonic (H1) to the energy of the highest
harmonic in the third formant range (A3).

Next, based on the 18 LLDs on each frame from an utterance, we generate the 62 acoustic features of high-level
statistics functions (HSFs) that will be used in this paper, including:

36 parameters of arithmetic mean and coefficient of variation computed through smoothing
all LLDs over time with a symmetric moving average filter 3 frames long.

16 additional functionals based on loudness and pitch over voiced regions representing the
20th, 50th, and 80th percentile, the range of 20th to 80th percentile, and the mean and standard
deviation of the slope of rising/falling signal parts.

4 additional parameters over all unvoiced segments: the arithmetic means of the Alpha Ratio,
the Hammarberg Index, and the spectral slopes from 0-500 Hz and 500-1500 Hz.

6 temporal features, including the number of loudness peaks per second, the mean length and the
standard deviation of continuously voiced regions the mean length and the standard deviation of
unvoiced regions (approximating pauses), and the number of continuous voiced regions per second
(pseudo syllable rate).

4.1.2 Linguistic Features. Linguistic Inquiry and Word Count (LIWC) [89, 109] is a computerized text analysis
software used to quantify language in written or spoken communication. LIWC is commonly used to examine
language data and can be applied to the study of language as an indication of psychological, social, and health-
related outcomes. We adopt predefined categories in LIWC that have been used in existing pieces of literature
that examine mental health from languages [64, 98]. Specifically, we use five categories of, in total 59 linguistic
features: (1) summary language variables, (2) basic linguistic style, (3) cognitive measures, (4) concerns,
(5) language formality. Summary variables include 4 narrative evaluation: analytical thinking [90], clout
[60], authenticity [84], and emotional tone [21] and Word per sentence. Then, we consider basic linguistic style
from two aspects: percent of functional words and time orientations. We choose them because the structure of
the word and tense are an expression of personality and inner thoughts [91]. Next, we export the cognitive
features: cognitive processes and perception processes, which directly mirror human perception and thought. In
addition, we consider 3 categories of psychological concerns: personal concerns, social concerns, and biological
concerns as a participant’s concerns may reflect their mental states. Lastly, we assess the formality of language,
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which includes informal speech and all punctuation. These linguistic measures, which are outlined in Table 2, are
extracted using the computerized text analysis software LIWC2015 [89, 109].

Table 2. Linguistic features

category feature

summary language variables analytical thinking, clout, authenticity, emotional tone,
word per sentence (wps)

basic linguistic style functional words

1st person singular,1st person plural, 2nd person, 3rd
person singular, 3rd person plural, impersonal
pronouns, articles, prepositions, auxiliary verbs,
adverbs, verbs, adjectives, comparisons, interrogatives,
numbers

time orientations past orientation, present orientation, future orientation

cognitive measures cognitive process insight, causation, discrepancy, tentative, certainty,
differentiation

perceptual processes see, hear, feel

concerns
personal concerns work, leisure, home, money, religion, death
social concerns family, friends, female references, male references
biological concerns body, health, sexual, ingestion

language formality informal speech swear words, netspeak words

punctuation
periods, commas, colons, semicolons, question marks,
exclamation marks, dashes, quotation marks,
apostrophes, parentheses, other irregular marks

4.1.3 Sensor Data Features. We compute features as follows based on raw sensor data:

Physical Activity. We use the Google Activity Recognition Api [45] to determine the activity in which a
participant is engaged. This API uses a dynamic algorithm the determine activity using device sensors. We
examined 3 variables representing time spent on foot, in a vehicle, and being sedentary.

Phone Usage. Our mobile application tracks the number of phone locks and unlocks performed by participants.
We calculate both the total number of phone locks and unlocks and the average time between phone locks and
unlocks.

Mobility. The application samples GPS every 10 minutes, taking into account both energy conservation and data
quality. Raw GPS coordinates are first clustered using density-based spatial clustering of applications with noise
(DBSCAN) [35]. After that, we calculate the number of unique locations and the distance traveled. Furthermore,
we compute the time spent in one’s primary and secondary locations. Such a strategy has been validated and
widely implemented in many research [10, 116] when accessing the lives of people with schizophrenia.

Ambient light. The application measures the ambient light conditions of the user’s surrounding environment
using light sensors on the phones. This can provide additional contextual information about the environment the
user is in.

Sleep. We also infer sleep duration, bedtime, and wake-up time using the method described in [19, 115], which
had an accuracy of +/- 32 minutes to the ground truth.

Phone calls and SMS. The application keeps track of SMS text message exchanges (both sent and received), as
well as the number and length of phone calls. No written or audio material from these calls or texts was captured
to protect privacy. We calculate the number of in/out SMS and calls, and the duration of in/out calls from the logs.
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Conversation duration and frequency The study application uses the smartphone microphone to sample and
gathers ambient sound in the device’s vicinity. A validated [123–125] in-situ privacy-preserving speech classifier
determines when human conversations was nearby. To ensure privacy, no raw audio was captured on the device
as part of the sensing system, but instead, the data was classified in the time and just the presence of voice was
recorded. We compute the number of independent conversations and their duration.

Features above (except for the sleep features) are computed on a daily basis and broken down into four epochs
of the day: morning (6am-12pm), afternoon (12pm-6pm), evening (6pm-12am) and night (12am-6am), that allow
us to model people’s behaviors during different parts of the day as recommended by multiple existing research
[116, 120]. As a result, we came up with a total of 103 features. Following that, we compute the arithmetic mean
of each feature over the 30 days to represent a participant’s overall behavior during the research. Days with less
than 15 hours of collected data (approximately 9.2% of all days) are considered to have too much missing data
and are omitted from the calculation of mean values [117].

4.2 Data Preprocessing for Deep Learning
4.2.1 Acoustic Signals from Voice Diaries. We must first transform the acoustic signal into a series of numbers
before we can use it in our models. Our voice diary signals are sampled at 44100Hz. In other words, a single
one-second clip would contain 44100 samples, which are too numerous to be processed in their raw state. In
fact, any sound frame can be represented by combining signals of various frequencies. And the spectrum - the
combination of frequencies that comprise a signal - can be used for further analysis in audio processing using deep
learning. Additionally, humans do not perceive frequencies linearly. Variations at lower frequencies are perceived
more readily than those at higher frequencies. Similar to frequency, humans perceive loudness logarithmically
rather than linearly. Consequently, when dealing with frequencies and amplitudes in our data, we should utilize
a logarithmic scale by means of the Mel Scale and the Decibel Scale. Mel Spectrogram is the outcome of these
two scale adjustments. We compute the Mel Spectrogram using Librosa, a python-based audio signal processing
library. Fig 4 shows the Mel Spectrogram computed from one of our voice diaries. It plots frequency along the
y-axis and time along the x-axis.

Fig. 4. Mel Spectrogram computed from one of our voice diaries.

We define a frame as a sequence of 8192 values, which corresponds approximately to a 200ms segment in a
44100Hz diary clip. The maximum length of a participant’s diary is 3 minutes, resulting in a maximum length T
of 180s * 44100Hz / 8192 = 968 in our computed output. We compute 128 Mel scales for each frame (the default
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setting of Librosa, which is commonly used in audio signal processing). As a result, the entire output (which will
be used as the input for deep models) is a (T = 968) (M = 128) matrix, and the colors in Fig. 4 represent the values.
The outputs of diaries with a duration of less than 3 minutes are zero-padded so that the padded values can be
identified and bypassed in RNN.

4.2.2 Transcripts from Voice Diaries. Before we can feed the transcripts into our models, we must first convert
them to a set of vectors. We use the pre-trained BERT (Bidirectional Encoder Representations from Transformers)
model [32] to extract contextual embeddings from the text. BERT is trained on the Wikipedia corpus in order to
solve different natural language processing tasks (e.g., named entity recognition). We first tokenize the words in
the sentences based on BERT’s vocabulary. We then extract a contextualized embedding for each of the tokens.
BERT automatically splits the original word into smaller subwords and characters (i.e., tokens). If the input has
multiple sentences, BERT uses the special token [SEP] to differentiate them. It also inserts a [CLS] token at the
start of the text to indicate the beginning. Each token is then embedded into a 768-dimensional space producing
a single 768-length vector. As a result, for each transcript text file, we create a sequence of length T, where T is
the number of tokens separated by BERT, and each specific position t in a such sequence is a vector of length 768.
All created sequences are 0 padded afterward to match the length of the longest text in the data set, as we must
keep the output the same shape for each transcript to feed them into the deep models.

4.2.3 Sensor Data from Smart Phones. Mobile sensing data is commonly used as sequences in two ways: (1)
low-level raw sensor signals sampled every second, and (2) high-level aggregated/inferred behavioral variables
on an epoch/daily basis. The first method is typically utilized for real-time applications like activity recognition.
The second is usually applied in long-term research. We use the second strategy in this study and create a time
sequence with a length of T=30 (days). In such a sequence, each position t is a vector containing 103 features
generated in Section 4.1.3. In deep learning, we keep the entire sequence instead of computing the arithmetic mean
of each feature throughout the 30 days so that the deep model can learn knowledge from the entire time series.
Deep neural networks frequently employ normalization procedures to boost convergence and generalization. As
a result, for each feature, we compute two normalized (within-person and between-person) values to capture both
within-person and between-person differences during the study. Finally, the dimension of the sensor data input
is T * M, where T = 30 denotes the number of days in the research and M = 2 * 103 = 206 denotes the number of
normalized features computed from sensor signals. All missing values are replaced with -999 so that they can be
recognized and skipped in deep recurrent neural networks.

In the following sections of this paper, we refer to the pre-processed acoustic signals, transcripted text, and
sensor data that we plan to use as inputs to our deep models as "audio data," "text data," and "sensor data" for
simplicity.

5 PREDICTING MODELS AND RESULTS
In this section, we evaluate various deep neural network architectures, from simple to complex, in order to
comprehend the predictive power of each type of data (sensor data, audio data, and text) and to identify the
best architecture capable of utilizing such rich and diverse multi-modal data for assessing AVH severity. The
binary labels we used for training and tried to predict are based on the HPSVQ participants completed during the
enrollment, as described in Section 3.2. That says, the prediction is made once per participant over the whole
duration of the study, which is 30 days. 2

2Identify severe AVH using the 1-month dataset holds diagnostic value. Per the Diagnostic and Statistical Manual of Mental Disorders, Fifth
Edition (DSM-5) [5], the co-occurrence of AVH symptoms during a 1-month period, along with another “characteristic sympto” such as
delusions or disorganized speech, is indicative of a diagnosis of schizophrenia. Furthermore, it should be noted that the HPSVQ is not intended
to measure short-term changes, as evidenced by its consistently high test-retest reliability when administered on a weekly basis [61]. In light
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To evaluate the models, we selected 60%, 20% and 20% of the independent users, respectively, as the training,
validation, and test sets. Data from a single participant appear in only one of the sets (leave-subjects-out). We are
aware that each user has multiple sequences of processed audio data and transcripts (depending on the number of
voice diaries uploaded), but only one sequence of 30-day sensor data (from Section 3). We are not using all of the
audio data and transcripts to train the model because (1) some participants may upload significantly more voice
diaries than others, resulting in an unbalanced training set (with a large amount of data from a single participant),
and (2) short voice diaries may not contain sufficient information for data analysis. Therefore, we select the 10
voice diaries with the longest audio length for each participant, and then select the 5 with the highest word
count in the transcript. This strategy may not be ideal, but it should be satisfactory for choosing a set of most
informative voice diaries from each participant, given that we do not intend to infer the occurrence of AVH from
individual audio diaries. 3 At each training epoch for users in the training set, one of the user’s selected voice
diaries is chosen to train the model. For each user in the validating or testing set, we simply select a voice diary
at random from those that have been selected. The model is trained with the Adam optimizer [63] and tuned for
optimal performance on the validation set. The testing set performance is reported.

5.1 Baseline: Using Traditional Machine Learning Approaches
Before moving on to deep learning approaches (which typically outperform regular machine learning methods
on sequential data), we would like to establish a baseline with classic machine learning methods. We train an
XGBoost [17] classifier with all of the interpretable features specified in Section 4.1. XGBoost is a highly efficient
and flexible gradient-boosting library. We conduct a grid search on specified hyper-parameters to optimize the
performance of the model formed from the training set on the validation set. Using the selected super-parameters,
we next train a model on the combined training and validation data and evaluate it on the testing set. Our
XGBoost model achieves a macro f1-score of 0.68 and a weighted f1-score of 0.72. We will further discuss the
important features in Section 6.

5.2 Uni-modal Data
In this subsection, we use the pre-processed audio data, transcripts, and sensor data from Section 4.2 as the input
for deep learning models to evaluate the performance of predicting AVH severity from each data type. A masking
layer [73] is used immediately after the input to inform the model that certain timesteps in the input are missing
(e.g., the 0 padding) and should therefore be skipped when processing the data.

5.2.1 Bidirectional Gated Recurrent Unit (BiGRU). We first predict the AVH using a Bidirectional Gated Recurrent
Unit (BiGRU) network [20]. If there are H hidden units in the GRU, the bidirectional GRU would output 2 * H
values. The model is constructed as detailed in Fig.5. The orange rectangle represents a vector of length M at a
particular time for a sequence shaped T * M. The bidirectional GRU layer produces an output (the red rectangle)
with the shape (T, 2 * H), where H is the number of hidden units in the GRU. Thus, we create a simple vector
representation of the sequence data. The representation generated by the bidirectional GRU layer is then fed into
fully connected neural networks and dropout layers.

of the characteristics of AVH, researchers scholars commonly assess the changes in the phenomenological characteristics of AVH through
longer-term follow-up, such as 6 months [61] or even up to 1 year [15].
3It is assumed that the lengthy voice diaries selected during the month are the most representative for inferring the severity of AVH, while
shorter ones may introduce noise to the prediction.
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Fig. 5. Illustration of Bidirectional Gated Recurrent Unit network.

5.2.2 Self-attentive Embedding. We augment the bidirectional GRU models with self-attention embedding [69], a
widely employed technique for sentence embedding in natural language processing. This attention mechanism
enables a recurrent model to focus on distinct portions of a lengthy input stream. The model is constructed in
accordance with Fig.6. We anticipate that self-attentive embedding will improve performance when text data is
used as input because it has been utilized successfully in text processing. We have yet to determine whether or
not it improves performance when audio or sensor data is used as input.

Fig. 6. Illustration of self-attentive BiGRU network.
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Instead of relying solely on the final hidden state of the RNN, self-attentive embedding necessitates all hidden
states at each step of the RNN. Assuming that the hidden unit number for each unidirectional GRU is H, we will
obtain an output of 𝐵 = (ℎ1, ℎ2, ...ℎ𝑇 ) from BiGRU, where ℎ𝑡 represents the concatenation of the hidden states
from the forward and backward GRU at position t. The attention mechanism encodes B into an embedding by
choosing a linear combination of the T BiGRU hidden vectors in B. The linear combination weights are defined in
the attention vector 𝛼 , which is computed as 𝛼 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑤2 ∗ 𝑡𝑎𝑛ℎ(𝑤1 ∗ 𝐵𝑇 )). The𝑤1 and𝑤2 are learned from
the data themselves. Note that𝑤2 is trained with an initial input of zero because we have no prior knowledge
of the attention vector. The softmax ensures that the sum of all computed weights is 1. Then, weighted sums
are computed by taking the inner product of the attention vectors a and B. The representation produced by
self-attentive BiGRU is then used as the input for subsequent fully connected neural networks and dropout layers
to predict the severity of AVH.

5.2.3 Predicting AVH using Uni-modal Data. Table 3 displays the f-1 scores when predicting the severity of AVH
using uni-modal data (sensor, audio, or text) and various deep neural networks. As anticipated, our experiments
demonstrate that self-attentive models, which were originally utilized in NLP areas, dramatically improve the
performance of text data-based models. The text-based self-attentive model achieves a close to 0.7 weighted f-1
score. It marginally improves the audio data a little bit (in terms of macro f-1). This indicates that despite the fact
that the mel spectrogram of raw audio data still contains a great deal of prosody-semantic information, it is more
difficult to learn a good attentive embedding from the spectrogram than from the transcribed text. In terms of
sensor data, the self-attentive model performs even worse than the BiGRU model. This suggests that focusing on
different areas of the 30-day study period will not improve the AVH prediction, which is to be expected given the
nature of rolling enrollment. Instead, we could simply apply RNN without attentive embedding.

Table 3. Predictive performance on AVH using uni-model data.

f1-score bigru-sensor bigru-audio bigru-text self-att-sensor self-att-audio self-att-text
macro 0.59 0.53 0.52 0.46 0.56 0.68
weighted 0.65 0.63 0.6 0.58 0.58 0.7

5.3 Multi-modal Data
In this subsection, we combine the optimal deep learning architecture for each type of uni-modal data described in
Section 5.2 by concatenating the representations from the sensor, audio, and text neural networks prior to feeding
them into the final fully connected neural networks and dropout layers (Fig. 7a). In addition, we hypothesize that
para-linguistic features (e.g., emotions, speed, energy, tone, etc.), which may be involved in the representation of
audio (orange rectangle in Fig. 7b, may influence the attentive embedding in text. Consequently, in Fig. 7b, we
use the representation of the audio as prior knowledge about the attention vector for text and learn𝑤2 (one of
the parameters for generating the attention vector, see Fig.6) starting from this representation rather than a zero
input.

Table 4 depicts the F-1 scores for predicting the severity of AVHusingmulti-modal data and the two architectures
depicted in Fig. 7. Architecture (b) that uses the audio sequence representation as a starting point for learning the
text attentive embedding parameter outperforms architecture (a). The audio + text model achieves a weighted f-1
score of 0.78, indicating the discriminatory power of using the wild voice diaries to determine the severity of
AVH. In addition, the addition of passive sensor data from mobile devices eventually results in a better weighted
f-1 score of 0.84. Table 5 and Table 6 compare the confusion matrices between the "audio+text" model and the
"combine-all" model, using the architecture (b). Based on the analysis of the confusion matrices, it appears that the
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inclusion of mobile sensing data has the potential to enhance precision, but does not appear to have a significant
impact on recall within our dataset. In our best model, the false positive rate, which refers to the probability of an
individual being erroneously diagnosed with severe AVH, is minimal, specifically 6%.

Table 4. Predictive performance on AVH using multi-model data.

f1-score audio+text (a) combined all (a) audio+text (b) combined all (b)
macro 0.73 0.77 0.75 0.81
weighted 0.75 0.81 0.78 0.84

(a) (b)

Fig. 7. Illustration of deep neural network using multi-modal data (audio, text and sensor data).

Table 5. Confusion matrix: using architecture (Fig. 7b) and
the "audio + text" model (weighted f-1 score = 0.78)

Ground-
truth

Prediction
0 1 total

0
True Neg.

26
False Pos.

5 31

1
False Neg.

5
True Pos.

10 15

total 31 15

Table 6. Confusion matrix: using architecture (Fig. 7b) and
the "combined-all" model (weighted f-1 score = 0.84)

Ground-
truth

Prediction
0 1 total

0
True Neg.

29
False Pos.

2 31

1
False Neg.

5
True Pos.

10 15

total 34 12
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6 INTERPRETATION
In this section, we study the feature interpretation for AVH prediction in two ways: the importance of handcrafted
features in the XGBoost classifier and the interpretation of deep learning-learned features.

6.1 Important Interpretable Features
SHAP (SHapley Additive exPlanations) is a game-theoretic way to explaining the output of any machine learning
model [72]. SHAP is one of the most used post-hoc explainability methods for computing feature attributions.
To understand how a single feature affects the AVH prediction, we plot the SHAP values of top-15 important
features for every sample in the dataset in Fig 8. The y-axis, from top to bottom, ranks the features in order of
importance. The x-axis refers to the actual SHAP values. The horizontal location of a point shows the feature’s
impact on the model’s prediction for a given sample (x > 0: more likely to be severe AVH; x < 0: more likely to be
non-severe AVH). The color of each point represents the value of the feature, with red indicating a high value
and blue indicating a low value. This visualization provides a comprehensive overview of the contributions of
each feature to the AVH prediction.

Fig. 8. SHAP value summary plot of the XGBoost model trained on handcrafted features

From the summary plot presented in Fig. 8, it can be observed that the following features have a significant
impact on the prediction of a person with severe AVH:
[Audio diary text features] lower occurrence of words related to “hearing things”; higher occurrence of words
related to “death”, 3rd person plural, and “seeing things”; having higher clout (power in talking).
[Audio diary acoustic features] larger number of continuous voiced regions per second, smaller mean of the
deviations in individual consecutive F0 period lengths, higher SD on the ratio of energy of the first F0 harmonic
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(H1) to the energy of the highest harmonic in the third formant range (A3), higher mean Hammarberg index (the
ratio of the strongest energy peaks in the 0–2 kHz vs 2–5 kHz regions) of unvoiced regions, higher loudness,
lower first formant (F1) frequency, shorter length of continuously voiced regions.
[Mobile sensing features] higher deviation in illuminance during night; fewer call-ins during night.

The results of the study provide new insights into AVH, some of which align with established clinical knowledge
and hypotheses. For example, words pertaining to “death” may serve as an indicator of the presence of major
depressive disorder [9]. “Seeing things” may indicate the presence of visual hallucinations, which typically
co-occur in association with other hallucinations such as AVH [122]. The larger number of continuous voiced
regions per second and shorter length of continuously voiced regions are consistent with the tendency of clinical
AVH patients to employ shorter utterances [23]. Other acoustic features may suggest basic impairments in
auditory processing [112] or voice-related distress [102]. The deviation in illuminance during the night and
fewer call-ins could indicate social withdrawal [54]. All of the aforementioned factors are associated with AVH.
However, some of the results may appear counter-intuitive, such as the lower occurrence of words related to
“hearing things” among patients with severe AVH. This may be due to the fact that patients with more severe
symptoms often have lower insight, and therefore do not describe their experiences within a clear frame of
“hearing things”. Some may still be lacking in literature support (e.g., higher clout). Despite these limitations, the
important features identified in this study demonstrate the feasibility of using multi-modal data for assessing the
severity of AVH. However, it is important to note that the feature importance is based on a baseline model and
further validation is needed through additional research to avoid false discoveries. We plan to delve deeper into
interpreting the high-level representations automatically learned through deep learning.

6.2 Interpretation of Auto-Learned Features from Deep Learning
It is crucial that we open the “black box” of a deep neural network and explain why it makes decisions in health
and wellness applications in order to enhance patient and clinician trust. In this part, we propose a post hoc
analysis for clinical interpretation of the learned representations from voice, transcript, and sensor data obtained
from our best model (reference Fig. 7b). We export the values in the hidden units in the yellow layer (256
hidden units that represent audio input), green layer (256 hidden units that represent text input), red layer (256
hidden units that represent sensor data input), and the fully connected layer (256 hidden-units that represent
multi-modal data input) before the last dropout layer. We label each value in the learned representations with
the type of data source and its index in the representations; for instance, audio-i denotes the i-th value in the
representation learned from audio sequence (yellow rectangle in Fig. 7b) and text-j denotes the j-th value in
the representation learned from text sequence (green rectangle in Fig. 7b). We employ ANOVA to examine the
auto-learned features across groups with non-severe AVH and severe AVH. Based on the effect size (partial eta
squared) from ANOVA, the most discriminative auto-learned features of each category of data are chosen. Then,
we analyze the relationship between these selected auto-learned features and interpretable hand-crafted features
generated in Section 4.1.

6.2.1 Representations Learned from Audio Data. Fig 9 shows the distribution of the top-3 most discriminative
auto-learned features from audio data (represented by the green rectangle in Fig. 7b) among the non-severe (label
0) and severe (label 1) AVH groups. People with severe AVH are more likely to have a higher value in audio-19,
audio-135 and audio-60. The effect sizes are all around 0.06, indicating a medium effect.

The table 7 lists the top-3 hand-crafted features with the strongest correlations (i.e., having the highest absolute
values of correlations) to the selected auto-learned audio features. For a detailed explanation of each hand-crafted
feature, refer to Section 4.1.1. Our results suggest that the network has learned multiple representations associated
with lower pitch and loudness, as well as steeper slopes of both rising and falling portions of loudness. These
representations may indicate negative symptoms or distress, respectively, and correspond to severe AVH.
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(a) audio-19, 𝜂2 = 0.07 (b) audio-135, 𝜂2 = 0.06 (c) audio-60, 𝜂2 = 0.06

Fig. 9. The distribution of the most discriminative representations from audio data among the non-severe (label 0) and severe
(label 1) AVH group. The effect size is indicated by partial eta squared.

Table 7. Top-3 representations automatically learned from audio data of voice diaries that identify patients with severe AVH,
as well as the top-3 handcrafted acoustic features with the strongest correlation to the representations.

Representations feature_1 feature_2 feature_3

audio-19 (+0.26) Mean Hammarberg index
over voiced regions

(-0.26) Mean Spectral Slope 0-500
Hz over voiced regions (-0.24) Mean Pitch

audio-135 (-0.26) Mean Spectral Slope 0-500
Hz over voiced regions

(+0.23) Standard deviation of the
slope of rising signal parts of
Loudness

(+0.22) Mean slope of rising signal
parts of Loudness

audio-60 (+0.23) Standard deviation of the
slope of falling signal parts of Pitch

(+0.22) Mean slope of falling signal
parts of Pitch (-0.18) Mean Loudness

These findings align with previous research in psychology and neuroscience. For instance, individuals with
schizophrenia spectrum disorders often experience deficits in auditory perception, such as pitch-based tone
matching [108]. Additionally, these individuals may have event-related potential deficits and neuroanatomical
abnormalities in the auditory cortex [56]. Such deficits in basic auditory processing and sensation can impact
higher-level cognition and have been linked to hallucinations [55]. Studies have also shown that individuals with
auditory hallucinations perform worse on pitch discrimination tasks compared to those without AVH [76].

6.2.2 Representations Learned from Text Data. Fig. 10 illustrates the distribution of the top 3 most discriminative
auto-learned features from text data (represented by the green rectangle in Fig. 7b) between non-severe (label 0)
and severe (label 1) AVH groups. Individuals with severe AVH tend to exhibit higher values for features text-39,
text-93, and text-13. The effect sizes suggest a large or close-to-large effect. The network has learned high-level
representations that are associated with text data that contains more past tense, fewer present tense expressions,
a higher emphasis on personal concerns related to money and work, and fewer references to cognitive and
perceptual processes, which may indicate the presence of severe AVH (refer to Table 8).
The focus on personal concerns related to money and work may suggest stressors that could exacerbate

symptoms [103]. There have been studies on the relationship between past focus and mental illness such as
schizophrenia and mood disorder, and have led to mixed results, with some research showing an increased use
[31] and others a decreased use [7] of past tense in written materials focusing on schizophrenia. It’s worth noting
that these studies relied on written materials, such as online essays and social media content, while our analysis is
based on transcripts from oral audio diaries. The findings regarding a lower emphasis on cognitive and perceptual
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processes are consistent with the argument by Javitt [55] that sensory deficits can negatively impact cognitive
processes.

(a) text-39, 𝜂2 = 0.16 (b) text-93, 𝜂2 = 0.13 (c) text-13, 𝜂2 = 0.13

Fig. 10. The distribution of the most discriminative transcript representations between the non-severe (label 0) and severe
(label 1) AVH groups, effect size indicated by partial eta squared.

Table 8. Top-3 representations automatically learned from text data from voice diaries that differentiate patients with severe
AVH the most effectively, as well as the top-3 created linguistic features with the strongest correlation to the representations.

Representations feature_1 feature_2 feature_3
text-39 (+0.37) Past tense (+0.30) Personal concerns: Money (-0.29) Present tense
text-93 (-0.31) Perceptual processes: Hear (+0.27) Personal concerns: Money (-0.25) Perceptual processes: All
text-13 (+0.27) Personal concerns: Work (+0.27) Personal concerns: Money (-0.27) Perceptual processes: All

6.2.3 Representations Learned fromMobile Sensing Data. Fig 11 shows the distribution of the top-3 representations
auto-learned representations from mobile sensing data (red rectangle in Fig. 7b), obtained from smartphones,
that effectively distinguish patients with severe AVH. Patients with severe AVH tend to have lower values for
sensor-4, sensor-183, and sensor-181. The effect sizes, as measured by partial eta squared, suggest a medium
effect.

(a) sensor-4, 𝜂2 = 0.08 (b) sensor-183, 𝜂2 = 0.08 (c) sensor-181, 𝜂2 = 0.07

Fig. 11. The distribution of the most discriminative sensing data representations between the non-severe (label 0) and severe
(label 1) AVH groups.
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Table 9 lists the top-3 hand-crafted features with the strongest correlation to the auto-learned representations
from mobile sensing data. It is important to note that the coefficient listed in the table represents the association
between the hand-crafted features and the auto-learned representations. Given that severe AVH is correlated with
lower values of the representations (Figure 11), readers should consider the inverse coefficients when examining
the relationships between the hand-crafted features and severe AVH.

Table 9. Top-3 hand-crafted features with the strongest correlation to the auto-learned representations from mobile sensing
data.

Representations feature_1 feature_2 feature_3

sensor-4 (-0.27) Duration of conversations
nearby (night, 0am-6am) (-0.27) Sleep: wake up time (-0.27) Number of conversations

nearby (0am-6am)

sensor-183 (+0.48) Duration of out-going
phone calls (whole day)

(+0.45) Duration of out-going
phone calls (morning, 6am-12pm)

(+0.45) Number of in-coming
phone calls (whole day)

sensor-181 (+0.35) Duration of phone usage
(evening, 6pm-0am)

(+0.32) Duration of in-coming
phone calls (whole day)

(+0.32) Duration of phone usage
(whole day)

Sensor-4 represents night-time conversations and wake-up time, both of which may indicate insomnia, a
known association with auditory hallucinations [101]. Sensor-183 pertains to telephone calls, while Sensor-181
focuses on mobile device usage. In general, the findings suggest that sleeping in and waking up late, reduced
incoming and outgoing phone calls, and decreased phone usage could indicate severe AVH, potentially reflecting
social isolation [54], which has been proposed to have a mechanistic relationship with psychotic symptoms.

6.3 Learned Attention Vector in Sentence Embedding
The use of self-attention in text enables an interpretation of the learned sentence embedding: we can generate
heat maps of the weight vectors associated with the text, allowing us to visualize which portions of the audio
diary are considered when predicting AVH. In Figure 12, we present the attention vector for a selected segment
of the audio diary. The darker areas on the heat map indicate the clauses or phrases that carry more weight in
the attention vector. The model appears to capture significant factors in the audio diary that are related to the
severity of AVH. These factors include following voices ("maybe it’s that I get control"), interfering voices ("but the
thing is that it starts to come on strong"), loud/distressing voices (feeling like you want a gallon scream at the top),
and feeling bad of self ("I’m so frustrated, it’s a very confusing illness"), all of which are encompassed in HPSVQ.

Fig. 12. Attention vector of a segment of an audio diary.
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7 DISCUSSION

7.1 Using Multimodal Streams and Deep Learning to Predict AVH
The purpose of our research was to identify the best deep learning architecture for predicting AVH using
multimodal stream data. To accomplish this, we conducted experiments using various deep learning approaches.

In contrast to traditional machine learning algorithms, deep learning models have the advantage of being able
to handle time series data more effectively. Traditional algorithms require manual extraction of a large number of
statistical features from each time series, leading to loss of information and a high number of correlated features.
Moreover, there is no way to assign different time periods in the series different weights, because it is difficult to
determine which time periods are most relevant for predicting outcomes. Our experiments showed that deep
learning models outperformed XGBoost, confirming their suitability for this type of problem.

Traditional machine learning algorithmsmay struggle with time series data. Researchers must compute multiple
hand-crafted or aggregated statistical features on each time series data (e.g., average, percentile, maximum,
minimum, etc.), resulting in information loss and an explosion of highly correlated features. In addition, there is
no way to assign different periods in the time series different weights because we do not know which time period
is most relevant for predicting a particular outcome. Our experiment also shows that deep learning outperforms
the XGBoost.
The results presented in Table 3 demonstrate that the text-based model is more effective compared to those

relying on speech and sensor data. This highlights the significance of participant’s words (i.e. content) as better
indicators of AVH, compared to the acoustic parameters in speech and daily behavior recorded by mobile phone
sensors. This finding is noteworthy, particularly in light of previous studies that have predominantly focused on
predicting symptoms of schizophrenia through passively sensed behavior [1, 111, 117]. However, predicting the
severity of AVH can prove to be a more complex task, as it is a symptom that can occur not just in individuals
with serious psychotic disorders like schizophrenia, but also in healthy individuals. In fact, as many as 75% of
individuals who do not meet the criteria for a psychotic disorder have reported experiencing AVH [59]. Moreover,
although AVH is a hallmark symptom of schizophrenia, not all patients with schizophrenia experience AVH [18].
Some neuroscience studies have shown that compared to schizophrenia patients without AVH (non-AVH), those
with AVH exhibit distinct intrinsic connectivity patterns in cortico-subcortical circuits [93] and interhemispheric
circuits [16]. However, the underlying mechanisms by which AVH arise spontaneously from intrinsic brain
activity remain elusive. Our results imply that predicting AVH based solely on passively sensed behavior may
not be sufficient, and demonstrate the efficacy of utilizing voice diary sequences.

7.2 Fully Automatic Pipeline (Using Automated Speech Recognition)
So far, in our investigations, we have utilized text that has been manually transcribed. This method enables us to
grasp the potential of voice diary transcriptions. Nevertheless, manual transcription services are not feasible
due to their high cost and manual nature. Thus, we are now further exploring the use of Automated Speech
Recognition (ASR) in a fully automated system.

With the aim of preserving patient confidentiality, we have chosen to utilize an in-house ASR system instead of
relying on audio-to-text services from third-party providers. This in-house system [127] is based on Baidu’s Deep
Speech 2 architecture [2] and was implemented using PyTorch [87]. The system was trained with speech corpora
obtained from the Linguistic Data Consortium 4, a consortium that includes universities, libraries, corporations,
and government research laboratories.
The results of our AVH prediction performance using a fully automated system with ASR instead of manual

transcription services can be seen in Table 10. Although it is expected that the accuracy of the prediction may

4https://www.ldc.upenn.edu/
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decrease due to errors in the ASR transcription process, our results show that even with sensor data, audio, and
transcripts obtained through this automated approach, we still obtained a macro f-1 score of 0.76 and a weighted
f-1 score of 0.80. These findings suggest that it is possible for the entire AVH prediction process to be carried out
with minimal human involvement in the future.

Table 10. Predictive performance on AVH using multi-model data (with text data from ASR). See Fig. 7 for the definition of
structure (a) and (b).

f1-sccore audio+text (a) combined all (a) audio+text (b) combined all (b)
macro 0.64 0.76 0.72 0.76
weighted 0.71 0.80 0.78 0.80

7.3 Implications
Despite the fact that researchers in the ubiquitous computing community (many of whom partnered with clinical
researchers) have investigated mobile sensing-based technology for a number of years [8], it has not yet been
widely adopted in the clinical treatment process. This paper presents an alternative method to enhance existing
mobile sensing-based applications by utilizing a simple periodic voice diary to assess the severity of AVH in the
wild.

AVH is the perceptual experience of hearing sounds or voices. This type of auditory hallucination may cause
considerable distress and disability. 5-28% of the general population experiences AVH [29, 57, 110], However, it is
challenging for medical professionals to assess the severity of AVH. Not all patients wish to or are able to contact
physicians due to a variety of factors (e.g., stigma, discrimination. lack of access to services). Fewer than 40% of
people with schizophrenia receive treatment from mental health professionals [34], let alone those with AVH,
which can be experienced by individuals with no diagnosed psychiatric disorders. Theoretically, the proposed
automated systems can be reached remotely and wouldn’t require as much from the individual relative to going
to in-person treatment, which is more ecologically valid and scalable.

8 CONCLUSION
The treatment needs and clinical status of individuals with AVH can vary and change over time [58]. Our
study highlights the usefulness and feasibility of using voice diary EMA to assess the severity of AVH. Table 3
demonstrates that the complete model, which integrates audio, text from voice diaries, and mobile sensor data,
achieved the highest level of performance. However, it is noteworthy that acceptable results can still be obtained by
solely utilizing audio and manually transcribed text from voice diaries. Moreover, the automated process presents
the possibility of developing an AVH predictive tool with minimal human intervention. The methodology presents
new opportunities for the deployment of health-centric mobile sensing applications, offering a potentially more
energy-efficient and privacy-conscious alternative. Furthermore, the successful online recruitment of participants
in our study shows their willingness to use EMA and smartphone technology for self-tracking of AVH. Voice diary
platforms possess the potential to assume a pivotal role in conducting comprehensive mental health evaluations
in the future.
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